On the Brandt Λ-extensions of Monoids with Zero
نویسنده
چکیده
We study algebraic properties of the Brandt λ-extensions of monoids with zero and non-trivial homomorphisms between the Brandt λ-extensions of monoids with zero. We introduce finite, compact topological Brandt λextensions of topological semigroups and countably compact topological Brandt λ-extensions of topological inverse semigroups in the class of topological inverse semigroups and establish the structure of such extensions and non-trivial continuous homomorphisms between such topological Brandt λ-extensions of topological monoids with zero. We also describe a category whose objects are ingredients in the constructions of finite (compact, countably compact) topological Brandt λ-extensions of topological monoids with zeros.
منابع مشابه
Brandt extensions and primitive topologically periodic inverse topological semigroups
In this paper we find sufficient conditions on primitive inverse topological semigroup S under which: the inversion inv : (H(S)) (H(S)) is continuous; we show that every topologically periodic countable compact primitive inverse topological semigroups with closed H-classes is topologically isomorphic to an orthogonal sum P i2= Bi (Gi) of topological Brandt extensions Bi (Gi) of countably compac...
متن کاملOn Regularity of Acts
In this article we give a characterization of monoids for which torsion freeness, ((principal) weak, strong) flatness, equalizer flatness or Condition (E) of finitely generated and (mono) cyclic acts and Condition (P) of finitely generated and cyclic acts implies regularity. A characterization of monoids for which all (finitely generated, (mono) cyclic acts are regular will be given too. We als...
متن کاملA Category Theoretic Formulation for Engeler-style Models of the Untyped λ-Calculus
We give a category-theoretic formulation of Engeler-style models for the untyped λ-calculus. In order to do so, we exhibit an equivalence between distributive laws and extensions of one monad to the Kleisli category of another and explore the example of an arbitrary commutative monad together with the monad for commutative monoids. On Set as base category, the latter is the finite multiset mona...
متن کاملOn zero divisor graph of unique product monoid rings over Noetherian reversible ring
Let $R$ be an associative ring with identity and $Z^*(R)$ be its set of non-zero zero divisors. The zero-divisor graph of $R$, denoted by $Gamma(R)$, is the graph whose vertices are the non-zero zero-divisors of $R$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$. In this paper, we bring some results about undirected zero-divisor graph of a monoid ring o...
متن کاملUniversality of the Lattice of Transformation Monoids
The set of all transformation monoids on a fixed set of infinite cardinality λ, equipped with the order of inclusion, forms a complete algebraic lattice Mon(λ) with 2 compact elements. We show that this lattice is universal with respect to closed sublattices, i.e., the closed sublattices of Mon(λ) are, up to isomorphism, precisely the complete algebraic lattices with at most 2 compact elements....
متن کامل